Reversible adapting layer produces robust single-crystal electrocatalyst for oxygen evolution
نویسندگان
چکیده
Electrochemically converting water into oxygen/hydrogen gas is ideal for high-density renewable energy storage in which robust electrocatalysts for efficient oxygen evolution play crucial roles. To date, however, electrocatalysts with long-term stability have remained elusive. Here we report that single-crystal Co3O4 nanocube underlay with a thin CoO layer results in a high-performance and high-stability electrocatalyst in oxygen evolution reaction. An in situ X-ray diffraction method is developed to observe a strong correlation between the initialization of the oxygen evolution and the formation of active metal oxyhydroxide phase. The lattice of skin layer adapts to the structure of the active phase, which enables a reversible facile structural change that facilitates the chemical reactions without breaking the scaffold of the electrocatalysts. The single-crystal nanocube electrode exhibits stable, continuous oxygen evolution for >1,000 h. This robust stability is attributed to the complementary nature of defect-free single-crystal electrocatalyst and the reversible adapting layer.
منابع مشابه
Nickel Oxide/Carbon Nanotubes as Active Hybrid Material for Oxygen Evolution Reaction
Carbon nanotubes are of great interest due to their high surface area and rich edge sites, which are favorable for wide applications. Here, a simple and efficient routine is presented by decoration of multi-wall carbon nanotube (MWCNT) with nickel oxide (NiO) nanoparticles.The morphologies of NiO-MWCNT were investigated by using scanning electron microscope (SEM) and energydispersive X-...
متن کاملSpinel-type lithium cobalt oxide as a bifunctional electrocatalyst for the oxygen evolution and oxygen reduction reactions.
Development of efficient, affordable electrocatalysts for the oxygen evolution reaction and the oxygen reduction reaction is critical for rechargeable metal-air batteries. Here we present lithium cobalt oxide, synthesized at 400 °C (designated as LT-LiCoO2) that adopts a lithiated spinel structure, as an inexpensive, efficient electrocatalyst for the oxygen evolution reaction. The catalytic act...
متن کاملA high-performance electrocatalyst for oxygen evolution reactions based on electrochemical post-treatment of ultrathin carbon layer coated cobalt nanoparticles.
Electrochemical post-treatment of ultrathin carbon layer coated cobalt nanoparticles generates a novel electrocatalyst, affording a small overpotential of 333 mV at a current density of 10 mA cm(-2) and a small Tafel slope of ∼58 mV per decade.
متن کاملTernary NiFeMn layered double hydroxides as highly-efficient oxygen evolution catalysts.
Layered double hydroxides (LDHs) are a family of layer materials that receive heightened attention. Herein a ternary NiFeMn-LDH is investigated with superior oxygen evolution activity, which is attributed to the Mn(4+) doping in the intralayer, which modifies the electronic structure and improves the conductivity of the electrocatalyst.
متن کاملRapid Characterization of Oxygen-Evolving Electrocatalyst Spot Arrays by the Substrate Generation/Tip Collection Mode of Scanning Electrochemical Microscopy with Decreased O2 Diffusion Layer Overlap
A simple approach for the screening of oxygen evolution reaction (OER) electrocatalyst arrays by scanning electrochemical microscopy (SECM) in the substrate generation/tip collection (SG/TC) mode is described. The methodology is based on the application of a series (9−10 replicates) of double-potential steps to a catalytically active substrate electrode, which is switched between potentials whe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2015